
Haskell Lists

Principles of Programming Languages

Colorado School of Mines

https://lambda.mines.edu

CSCI-400

https://lambda.mines.edu

Learning Group Activity

With your learning group, share answers from the learning group activity.

Blake will go around and check participation. If you have questions on the LGA
(and your group members cannot answer), ask Blake. If he cannot answer, feel
free to Email me or the list.

CSCI-400

List Notations

[1, 2, 3] denotes a list containing the integers 1, 2 and 3
[1..10] denotes a list containing the integers 1 through 10 (inclusively)
[1..] denotes an infinite list containing all positive integers (works in Haskell
because of lazy evaluation)

CSCI-400

List Operations

CSCI-400

Concatenating Lists

To join two lists together, use the ++ infix operator:
GHCi> [1, 2, 3, 4] ++ [-1, -4, -2, -3]
[1,2,3,4,-1,-4,-2,-3]

CSCI-400

Cons ("Construct") Operator

The construct (:) operator adds an element to the front of a list:
GHCi> 10 : [1, 2]
[10,1,2]

The cons operator is typically used to construct lists in a recursive function.

CSCI-400

head and last

The head and last functions return the first and last elements of a list:
GHCi> head [1,2,3]
1
GHCi> last [1,2,3]
3

CSCI-400

init and tail

The init and tail functions return all but the last and first (respectively) elements
in a list:

GHCi> init [1,2,3]
[1,2]
GHCi> tail [1,2,3]
[2,3]

CSCI-400

take and drop

The take function returns the first n elements in a list:
GHCi> take 3 [1..5]
[1,2,3]

The drop function returns the list without the first n elements:
GHCi> drop 3 [1..5]
[4,5]

CSCI-400

cycle and repeat

cycle takes a list and returns the infinite list that continually cycles through the
given list:

GHCi> take 15 (cycle [1..6])
[1,2,3,4,5,6,1,2,3,4,5,6,1,2]

repeat takes anything and returns the list of that element infinitely repeated:
GHCi> take 5 (repeat 4)
[4,4,4,4,4]

How does the result of these two operations differ?

take 9 (cycle [1..3])
take 3 (repeat [1..3])

CSCI-400

cycle and repeat

cycle takes a list and returns the infinite list that continually cycles through the
given list:

GHCi> take 15 (cycle [1..6])
[1,2,3,4,5,6,1,2,3,4,5,6,1,2]

repeat takes anything and returns the list of that element infinitely repeated:
GHCi> take 5 (repeat 4)
[4,4,4,4,4]

How does the result of these two operations differ?

take 9 (cycle [1..3])
take 3 (repeat [1..3])

CSCI-400

elem: Is it an elem-ent?

The elem function takes anything and determines if it is an element in the list:
GHCi> elem 10 [1..9]
False
GHCi> elem 10 [1..10]
True

With your learning group...

elem 10 [1..] returns True, however, elem -1 [1..] never returns. What does
this tell us about the implementation or algorithmic complexity of elem? What is the
take-away from this?

CSCI-400

elem: Is it an elem-ent?

The elem function takes anything and determines if it is an element in the list:
GHCi> elem 10 [1..9]
False
GHCi> elem 10 [1..10]
True

With your learning group...

elem 10 [1..] returns True, however, elem -1 [1..] never returns. What does
this tell us about the implementation or algorithmic complexity of elem? What is the
take-away from this?

CSCI-400

map: Apply a function to each element

map takes a function and a list and applies the function to each element of the list:
GHCi> double x = x * 2
GHCi> map double [1..3]
[2,4,6]

CSCI-400

More List Operations

length returns the length
reverse reverses a list
sum returns the sum
product returns the product
minimum and maximum return the min/max element

CSCI-400

List Comprehensions

CSCI-400

Set Builder Notation (most likely review)

In mathematics, we can use the set builder notation to quickly specify sets:

{x × 2|x ∈ {10, . . . , 20}}

This reads "the set of all x times 2 such that x is in the set of integers from 10 to 20".

CSCI-400

Translating Set Builder to Haskell

Haskell’s list comprehension notation looks strikingly similar to the set builder
notation used in maths:

GHCi> [x * 2 | x <- [10..20]]
[20,22,24,26,28,30,32,34,36,38,40]

Elements are "drawn" from the list [1..10]
x takes the value of 10 first, then 11, ..
The list is built by computing x * 2

Make sense how this works? Questions?

CSCI-400

Translating Set Builder to Haskell

Haskell’s list comprehension notation looks strikingly similar to the set builder
notation used in maths:

GHCi> [x * 2 | x <- [10..20]]
[20,22,24,26,28,30,32,34,36,38,40]

Elements are "drawn" from the list [1..10]
x takes the value of 10 first, then 11, ..
The list is built by computing x * 2

Make sense how this works? Questions?

CSCI-400

Translating Set Builder to Haskell

Haskell’s list comprehension notation looks strikingly similar to the set builder
notation used in maths:

GHCi> [x * 2 | x <- [10..20]]
[20,22,24,26,28,30,32,34,36,38,40]

Elements are "drawn" from the list [1..10]
x takes the value of 10 first, then 11, ..
The list is built by computing x * 2

Make sense how this works? Questions?

CSCI-400

Predicates

Predicates can be created on a list comprehension by adding them with a comma:

GHCi> [x + 1 | x <- [10..20], x `mod` 2 == 0]
[11,13,15,17,19,21]

In this case, x `mod` 2 == 0 must evaluate to True for the number to be used in
the comprehension.

You can use multiple predicates as well, simply add more commas:
GHCi> [x + 1 | x <- [10..20], x `mod` 2 == 0, x /= 14]
[11,13,17,19,21]

CSCI-400

Predicates

Predicates can be created on a list comprehension by adding them with a comma:

GHCi> [x + 1 | x <- [10..20], x `mod` 2 == 0]
[11,13,15,17,19,21]

In this case, x `mod` 2 == 0 must evaluate to True for the number to be used in
the comprehension.

You can use multiple predicates as well, simply add more commas:
GHCi> [x + 1 | x <- [10..20], x `mod` 2 == 0, x /= 14]
[11,13,17,19,21]

CSCI-400

Drawing from Multiple Lists

Haskell has a syntax to draw from multiple lists in a comprehension. For example:
GHCi> [x + y | x <- [1..5], y <- [1..3]]
[2,3,4,3,4,5,4,5,6,5,6,7,6,7,8]

Notice that Haskell draws all possible combinations of x and y, first x = 1 for all y,
then x = 2 for all y, ...

CSCI-400

Nested Comprehensions

Notice we can nest comprehensions:
GHCi> [[x + 1 | x <- [1..y]] | y <- [1..3]]
[[2],[2,3],[2,3,4]]

CSCI-400

Tuples in Haskell

CSCI-400

Pronunciation

One of the hardest things about tuples is how to pronounce it.

You could pronounce it TWO-pull, as in "quadruple"
You could pronounce it TUH-pel, as in "quintuple"

Both are correct. So don’t get angry at anyone, please!

CSCI-400

Tuples

Tuples are used to store multiple heterogeneous (of different type) values as
a single value
Tuples come in different sizes, each of different type
A tuple of same size but different member types is also a different type
Written in parentheses: (1, "hello")

CSCI-400

Tuple Operations

fst: get the first element from a tuple
snd: get the second element from a tuple
zip: merge the elements from two lists into a single list of tuples:
GHCi> zip [1..3] [4..6]
[(1,4),(2,5),(3,6)]
GHCi> zip [1..] ["alpha", "beta", "gamma"]
[(1, "alpha"), (2, "beta"), (3, "gamma")]

CSCI-400

Examples

CSCI-400

List Comprehensions

Filter out uppercase letters (works since strings are lists too):
noUppers st = [c | c <- st, not (elem c ['A'..'Z'])]

Generating tuples in a comprehension:
[(a, b, c) | a <- [1..5], b <- [1..5], c <- [1..5]]

CSCI-400

End of Lecture: Roadmap

CSCI-400

Roadmap

Questions?
Jack is back next time!
Thursday’s LGA does not need to be split up ahead of time.

CSCI-400

