The $ Function

Haskell has an infix function: $. Here is how it’s defined:

\[(\$) :: (a \rightarrow b) \rightarrow a \rightarrow b\]
\[f \; \$ \; x = f \; x\]

What the heck is this worthless function?

It’s a function applicator: it takes a function on the left and an argument on the right, and applies the function to the argument.

So it’s still worthless, right?

What if I told you that it has the lowest precedence and is right-associative?
Haskell has an infix function: \$. Here is how it’s defined:

\[
(\$) :: (a \to b) \to a \to b
\]

\[
f \$, x = f \ x
\]

What the heck is this worthless function? It’s a function applicator: it takes a function on the left and an argument on the right, and applies the function to the argument.
Haskell has an infix function: \$. Here is how it’s defined:

\[
(\$) :: (a \to b) \to a \to b
\]

\[
f \$ x = f \ x
\]

What the heck is this worthless function? It’s a function applicator: it takes a function on the left and an argument on the right, and applies the function to the argument.

So it’s still worthless, right? What if I told you that it has the lowest precedence and is right-associative?
Function application using spaces is left-associative and high precedence, so $f \ a \ b \ c$ is equivalent to $(((f \ a) \ b) \ c)$.

What if a and b were functions and we wanted $f\ (a\ (b\ c))$ instead? We had to add lots of parentheses and it gets messy fast.
Function application using spaces is left-associative and high precedence, so \(f \ a \ b \ c \) is equivalent to \(((f \ a) \ b) \ c\).

What if \(a \) and \(b \) were functions and we wanted \(f (a \ (b \ c)) \) instead? We had to add lots of parentheses and it gets messy fast.

Let’s use $ to fix this:

\[
\text{-- The following two expressions are equivalent}
\]
\[
f (a \ (b \ c))
\]
\[
f \ $ \ a \ $ \ b \ c
\]
Reducing Parentheses: More Examples

- length (filter odd [1..10])
Reducing Parentheses: More Examples

- length (filter odd [1..10])
- length $ filter odd [1..10]
Reducing Parentheses: More Examples

- `length (filter odd [1..10])`
- `length $ filter odd [1..10]`

- `sum (map sqrt (filter even [1..100]))`
Reducing Parentheses: More Examples

- length (filter odd [1..10])
- length $ filter odd [1..10]

- sum (map sqrt (filter even [1..100]))
- sum $ map sqrt $ filter even [1..100]
Reducing Parentheses: More Examples

- `length (filter odd [1..10])`
- `length $ filter odd [1..10]

- `sum (map sqrt (filter even [1..100]))`
- `sum $ map sqrt $ filter even [1..100]

More examples:

- What does `sqrt 3 + 4 + 5` compute?
- What does `sqrt $ 3 + 4 + 5` compute?
-- This function takes a list of functions and applies [1..10] to each
onCountToTen = map ($ [1..10])

-- For example:
onCountToTen [filter even, filter odd, map (*2)]
-- [[2,4,6,8,10],[1,3,5,7,9],[2,4,6,8,10,12,14,16,18,20]]
$: \textbf{What I expect you to know}

- How to \textbf{interpret} an expression which uses $\$
- How to \textbf{use} $\$\$ to reduce parentheses
- How to \textbf{use} a partial application of $\$\$ to apply an argument to a list of functions
$: What I expect you to know

- How to **interpret** an expression which uses $
- How to **use** $ to reduce parentheses
- How to **use** a partial application of $ to apply an argument to a list of functions

Understanding the definition of the $ function and it’s precedence is optional, but I think it’s helpful to figure out the above.
In mathematics, if we have a function $f(x)$ and $g(x)$, we can rewrite $f(g(x))$ as:

$$(f \circ g)(x)$$
In mathematics, if we have a function $f(x)$ and $g(x)$, we can rewrite $f(g(x))$ as:

$$(f \circ g)(x)$$

In Haskell, this \circ can equivalently be written as .:

```haskell
sumOfSquares = sum . (^2)
```
Which do you choose?

-- All of these are equivalent, which would you write?
crazy x y = floor (negate (tan (sin (max x y))))
crazy x y = floor $ \neg \tan \sin \max \ x \ y$
crazy = floor . negate . tan . sin . max
A **reduction function** is a function which takes a list and reduces the elements in the list to a single value. For example, `sum` and `product` are reduction functions:

```
GHCi> sum [1..10]
55
GHCi> product [1..10]
3628800
```
A reduction function is a function which takes a list and reduces the elements in the list to a single value. For example, sum and product are reduction functions:

```
GHCi> sum [1..10]
55
GHCi> product [1..10]
3628800
```

What if we had a generalized reduction function which took a function and applied it across a sequence to obtain a result? Something like this:

```
reduce(f, seq) = f(f(f(seq[0], seq[1]), seq[2]), ...)
```
Haskell has a function called foldr, which takes a function, an initial value, and a list, and applies the function to each element in the list, recursively calling fold for the right value.

\[
\text{foldr } f \ z \ [\] = z \\
\text{foldr } f \ z \ (x:xs) = f \ x \ (\text{foldr } f \ z \ xs)
\]
Haskell has a function called foldl, which takes a function, an initial value, and a list. It recurses immediately, making the new initial value the result of calling the function on the initial value and the current element.

\[
\text{foldl } f\ z\ [] = z
\]
\[
\text{foldl } f\ z\ (x:xs) = \text{foldl } f\ (f\ z\ x)\ xs
\]
Examples: Folding

-- sum using foldl
sum' = foldl (+) 0

-- sum using foldr
sum' = foldr (+) 0

-- product
product' = foldl (*) 1
With your new learning groups, take some time preparing for the quiz using whatever study mechanism you wish.

Topics covered:

- Pattern Matching and Recursion
- Let, Where, Case, Guards