Haskell: Higher Order Functions (Part II)

Principles of Programming Languages
Colorado School of Mines

https://lambda.mines.edu
Haskell has an infix function: \$. Here is how it’s defined:

\[(\$) \colon (a \rightarrow b) \rightarrow a \rightarrow b \]

\[f \; \$ \; x = f \; x \]
Haskell has an infix function: $.

Here is how it’s defined:

\[(\$) \colon (a \rightarrow b) \rightarrow a \rightarrow b\]

\[f \; \$ \; x = f \; x\]

What the heck is this worthless function? It’s a function applicator: it takes a function on the left and an argument on the right, and applies the function to the argument.
The $ Function

Haskell has an infix function: $. Here is how it’s defined:

\[
($) :: (a \rightarrow b) \rightarrow a \rightarrow b
\]

\[
f \ $ \ x = f \ x
\]

What the heck is this worthless function? It’s a function applicator: it takes a function on the left and an argument on the right, and applies the function to the argument.

So it’s still worthless, right? What if I told you that it has the lowest precedence and is right-associative?
Using $ to reduce parentheses

Function application using spaces is left-associative and high precedence, so \(f \ a b c \) is equivalent to \(((f \ a) b) c\).

What if \(a \) and \(b \) were functions and we wanted \(f (a (b c)) \) instead? We had to add lots of parentheses and it gets messy fast.
Function application using spaces is left-associative and high precedence, so \(f \ a \ b \ c \) is equivalent to (((f a) b) c).

What if \(a \) and \(b \) were functions and we wanted \(f (a (b c)) \) instead? We had to add lots of parentheses and it gets messy fast.

Let’s use $ to fix this:

```plaintext
-- The following two expressions are equivalent
f (a (b c))
f $ a $ b c
```
Reducing Parentheses: More Examples

- length (filter odd [1..10])
Reducing Parentheses: More Examples

- \(\text{length } (\text{filter odd } [1..10]) \)
- \(\text{length } \$ \text{ filter odd } [1..10] \)
Reducing Parentheses: More Examples

- \texttt{length (filter odd [1..10])}
- \texttt{length $ \ filter \ odd \ [1..10]}$

- \texttt{sum (map sqrt (filter even [1..100]))}
Reducing Parentheses: More Examples

- `length (filter odd [1..10])`
- `length $ filter odd [1..10]`

- `sum (map sqrt (filter even [1..100]))`
- `sum $ map sqrt $ filter even [1..100]`
Reducing Parentheses: More Examples

- length (filter odd [1..10])
- length $ \text{filter odd [1..10]}

- sum (map sqrt (filter even [1..100]))
- sum $ \text{map sqrt $ filter even [1..100]}

More examples:

- What does \(\text{sqrt 3 + 4 + 5} \) compute?
- What does \(\text{sqrt $ 3 + 4 + 5} \) compute?
-- This function takes a list of functions and applies
-- [1..10] to each
onCountToTen = map ($ [1..10])

-- For example:
-- onCountToTen [filter even, filter odd, map (*2)]
-- [[2,4,6,8,10],[1,3,5,7,9],[2,4,6,8,10,12,14,16,18,20]]
$: What I expect you to know

- How to **interpret** an expression which uses $
- How to **use** $ to reduce parentheses
- How to **use** a partial application of $ to apply an argument to a list of functions
$: What I expect you to know

- How to **interpret** an expression which uses $$
- How to **use** $ to reduce parentheses
- How to **use** a partial application of $ to apply an argument to a list of functions

Understanding the definition of the $ function and its precedence is optional, but I think it’s helpful to figure out the above.
In mathematics, if we have a function $f(x)$ and $g(x)$, we can rewrite $f(g(x))$ as:

$$(f \circ g)(x)$$
In mathematics, if we have a function \(f(x) \) and \(g(x) \), we can rewrite \(f(g(x)) \) as:

\[
(f \circ g)(x)
\]

In Haskell, this \(\circ \) can equivalently be written as .:

\[
\text{sumOfSquares} = \text{sum} \ . \ (\^2)
\]
Which do you choose?

-- All of these are equivalent, which would you write?
crazy x y = floor (negate (tan (sin (max x y))))
crazy x y = floor $ negate $ tan $ sin $ max x y
crazy = floor . negate . tan . sin . max
A **reduction function** is a function which takes a list and reduces the elements in the list to a single value. For example, `sum` and `product` are reduction functions:

```ghci
GHCi> sum [1..10]
55
GHCi> product [1..10]
3628800
```
A **reduction function** is a function which takes a list and reduces the elements in the list to a single value. For example, `sum` and `product` are reduction functions:

```
GHCi> sum [1..10]
55
GHCi> product [1..10]
3628800
```

What if we had a generalized reduction function which took a function and applied it across a sequence to obtain a result? Something like this:

```
reduce(f, seq) = f(f(f(seq[0], seq[1]), seq[2]), ...)
```
Haskell has a function called \texttt{foldr}, which takes a function, an initial value, and a list, and applies the function to each element in the list, recursively calling \texttt{foldr} for the right value.

\[
\begin{align*}
\texttt{foldr } f \ z \ [{}] &= z \\
\texttt{foldr } f \ z \ (x:x:xs) &= f \ x \ (\texttt{foldr } f \ z \ xs)
\end{align*}
\]
Haskell has a function called foldl, which takes a function, an initial value, and a list. It recurses immediately, making the new initial value the result of calling the function on the initial value and the current element.

```
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs
```
Examples: Folding

-- sum using foldl
sum' = foldl (+) 0

-- sum using foldr
sum' = foldr (+) 0

-- product
product' = foldl (*) 1
With your new learning groups, take some time preparing for the quiz using whatever study mechanism you wish.

Topics covered:

- Pattern Matching and Recursion
- Let, Where, Case, Guards