
Symbolic Computation

Principles of Programming Languages

Colorado School of Mines

https://lambda.mines.edu

CSCI-400

https://lambda.mines.edu


LGA Discussion

1 What questions did you have on the reading? Can your group members
answer, or you can ask me.

2 Define symbolic computation in your own words.
3 What structures in Racket would you find useful for symbolic computation?
4 Share what other applications you came up with for symbolic computation.

Formulate some more with your group.

CSCI-400



Symbolic Computation Defined

Wikipedia considers symbolic computation to be simply computer algebra.
While computer algebra is a form of symbolic computation, there are plenty of
other applications.

Programming languages
Compilers
Artificial intelligence
...

CSCI-400



Lisp & Symbolic Computation

Lisp dialects have a homoiconic syntax: the code is data, and data is code. Lists
being the structure of the language syntax, code can be manipulated just like lists.

The concept of "quoting" is fairly unique to just Lisp.
It leads to a natural way to manipulate and work on code in the language.
Key point: we can manipulate code before it is evaluated!

John McCarthy (1958)

Recursive Functions of Symbolic Expressions and their Computation by Machine

Today we will explore a practical application of symbolic computation in
artificial intelligence.

CSCI-400



Boolean Expressions as S-Expressions

To represent boolean expressions in Racket, we need to formalize an s-expression
syntax for them:

Conjunction a ∧ b ∧ c . . . (and a b c ...)
Disjunction a ∨ b ∨ c . . . (or a b c ...)
Negation ¬a (not a)

Practice: convert to s-expression

1 a ∧ (b ∨ c ∨ d) ∧ d
2 ¬a ∧ (a ∨ ¬b) ∧ ¬(a ∨ b)

CSCI-400



Conjunctive Normal Form

Note
Depending on your background, you may already know this. Bear with me while I
explain it to everyone else.

A boolean expression is in conjunctive normal form (CNF) if and only if all of the
below are true:

It only contains conjunctions, disjunctions, and negations.
Negations only contain a variable, not a conjunction or disjunction.
Disjunctions only contain variables and negations.

Example:
(a ∨ b ∨ c) ∧ (¬a ∨ b)

Learning Group Activity

Come up with an expression in CNF (not the example), and one not in CNF.

CSCI-400



Verifying CNF in Racket

(define/match (in-cnf? expr [level 'root])
[((? symbol?) _) #t]
[(`(not ,(? symbol?)) _) #t]
[((list-rest 'or args) (or 'root 'and))
(andmap (λ (x) (in-cnf? x 'or)) args)]
[((list-rest 'and args) 'root)
(andmap (λ (x) (in-cnf? x 'and)) args)]
[(_ _) #f])

CSCI-400



Conversion to CNF

We can convert any boolean expression composed of just conjunctions,
disjunctions, and negations to CNF using the following mathematical properties:

Elimination of double-negation: ¬¬a→ a
DeMorgan’s Law (Conjunction): ¬(a ∧ b)→ (¬a ∨ ¬b)
DeMorgan’s Law (Disjunction): ¬(a ∨ b)→ (¬a ∧ ¬b)
Distributive Property: a ∨ (b ∧ c)→ (a ∨ b) ∧ (a ∨ c)

CSCI-400



Practice: Convert to CNF

Convert each expression to CNF:

1 ¬(a ∧ ¬b)
2 ¬((a ∨ b) ∧ ¬(c ∨ d))
3 ¬((a ∨ b) ∧ (c ∨ d))

CSCI-400



Racket: Convert to CNF

Here’s the base structure we want our code to follow:

(define (boolean->cnf expr)
(if (in-cnf? expr)
expr
(boolean->cnf
(match expr
...)))) ;; cases for the conversions we know

CSCI-400



Double Negation Pattern Match

[`(not (not ,e)) e]

CSCI-400



Simplify and/or of single argument

[`(or ,e) e]
[`(and ,e) e]

CSCI-400



DeMorgan's Law

DeMorgan’s Law for Conjunction
[`(not (and ,@(list-rest args)))
`(or ,@(map (curry list 'not) args))]

DeMorgan’s Law for Disjunction
[`(not (or ,@(list-rest args)))
`(and ,@(map (curry list 'not) args))]

CSCI-400



Explosion of and/or with nested expression

and in and simplification
[`(and ,@(list-no-order (list-rest 'and inside) outside ...))
`(and ,@inside ,@outside)]

or in or simplification
[`(or ,@(list-no-order (list-rest 'or inside) outside ...))
`(or ,@inside ,@outside)]

CSCI-400



Distributive Law

[`(or ,@(list-no-order (list-rest 'and and-args) args ...))
`(or ,@(cdr args)

(and ,@(map
(λ (x) (list 'or (car args) x))
and-args)))]

CSCI-400



Recurse otherwise...

[(list-rest sym args)
(cons sym (map boolean->cnf args))]

CSCI-400



Putting it all together

> (boolean->cnf '(or (and a b) (and (not c) d) (and (not e) f)))
'(and (or (not c) a (not e))

(or (not c) b (not e))
(or d a (not e))
(or d b (not e))
(or (not c) a f)
(or (not c) b f)
(or d a f)
(or d b f))

CSCI-400



SAT Solving

The satisfiability problem1 in computer science asks:
Given a boolean expression, is there any set of assignments to the vari-
ables which results in the equation evaluating to true?

For example:

(and a (not a)): not satisfiable
(and a a): satisfiable

(you could imagine much larger inputs)

1If you’ve taken algorithms, you probably know that this problem is NP-complete

CSCI-400



Davis-Puntam-Lodgemann-Loveland Algorithm

procedure DPLL(e):
if e is true:

return true
if e is false:

return false
v← select-variable(e)
e1 ← simplify(assume-true(v, e))
if DPLL(e1):

return true
e2 ← simplify(assume-false(v, e))
return DPLL(e2)

Note
DPLL will work with any variable selection from select-variable, but certain
selections may lead to a more efficent solution on average than others.

CSCI-400



DPLL: Example

a ∧ (¬a ∨ ¬b) ∧ c ∧ (b ∨ ¬c)

¬b ∧ c ∧ (b ∨ ¬c)

1. Assume a is true and simplify

false

2. b = true

c ∧ ¬c

3. b = false

false

4. c = true

false

5. c = false

false

6. a = false

We never reached true, so this equation is not satisfiable

CSCI-400



DPLL: Exercise

Draw the DPLL tree for the following expression, and determine whether the
equation is satisfiable or not:

(a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b)

CSCI-400



DPLL in Racket

(define (solve-cnf expr)
(define (solve-rec expr bindings)
(case expr
[(#t) bindings]
[(#f) #f]
[else
(let ([sym (choose-symbol expr)])
(define (solve-assume value)

(solve-rec (assume sym value expr)
(cons (cons sym value) bindings)))

(let ([sym-true (solve-assume #t)])
(if sym-true
sym-true
(solve-assume #f))))]))

(solve-rec expr '()))

CSCI-400



choose-symbol

Not a good heuristic, but it works!

(define (choose-symbol expr)
(if (symbol? expr)
expr
(choose-symbol (cadr expr))))

CSCI-400



Assuming and Simplifying

(define (assume var value expr)
(cond
[(eq? var expr) value]
[(equal? `(not ,var) expr) (not value)]
[(symbol? expr) expr]
[else
(match expr
[`(not ,_) expr]
[(list-rest sym args)
...])])) ;; handle conjunction/disjunction

CSCI-400



Handling Conjunction/Disjunction

(let ([look-for (case sym
[(and) #f]
[(or) #t])])

(define (f item acc)
(if (eq? acc look-for)
acc
(let ([result (assume var value item)])
(cond
[(eq? result look-for) result]
[(eq? result (not look-for)) acc]
[else (cons result acc)]))))

(let ([result (foldl f '() args)])
(cond
[(null? result) (not look-for)]
[(eq? result look-for) result]
[else (cons sym result)])))

CSCI-400



Putting It All Together

(define (solve expr)
(solve-cnf (boolean->cnf expr)))

> (solve '(and a b))
'((b . #t) (a . #t))
> (solve '(or (and a b) (and c d) (and e f)))
'((d . #t) (f . #t) (c . #t))
> (solve '(and a (not a)))
#f
> (solve '(and (or (not a) b) (or a (not b))))
'((b . #t) (a . #t))

CSCI-400


