Symbolic Computation

Principles of Programming Languages

Colorado School of Mines

https://lambda.mines.edu

LGA Discussion

- 1 What questions did you have on the reading? Can your group members answer, or you can ask me.
- Define symbolic computation in your own words.
- 3 What structures in Racket would you find useful for symbolic computation?
- 4 Share what other applications you came up with for symbolic computation. Formulate some more with your group.

Symbolic Computation Defined

- Wikipedia considers symbolic computation to be simply *computer algebra*.
- While computer algebra is a form of symbolic computation, there are plenty of other applications.
 - Programming languages
 - Compilers
 - Artificial intelligence
 - · ...

Lisp & Symbolic Computation

Lisp dialects have a **homoiconic syntax**: the code is data, and data is code. Lists being the structure of the language syntax, code can be manipulated just like lists.

- The concept of "quoting" is fairly unique to just Lisp.
- It leads to a natural way to manipulate and work on *code* in the language.
- **Key point:** we can manipulate code before it is evaluated!

John McCarthy (1958)

Recursive Functions of Symbolic Expressions and their Computation by Machine

Today we will explore a practical application of symbolic computation in artificial intelligence.

Boolean Expressions as S-Expressions

To represent boolean expressions in Racket, we need to formalize an s-expression syntax for them:

Conjunction	$a \wedge b \wedge c \dots$	(and a b c)
Disjunction	$a \lor b \lor c \dots$	(or a b c)
Negation	$\neg a$	(not a)

Practice: convert to s-expression

Conjunctive Normal Form

Note

Depending on your background, you may already know this. Bear with me while I explain it to everyone else.

A boolean expression is in **conjunctive normal form** (CNF) if and only if all of the below are true:

- It only contains conjunctions, disjunctions, and negations.
- Negations only contain a variable, not a conjunction or disjunction.
- Disjunctions only contain variables and negations.

Example:

$$(a \lor b \lor c) \land (\neg a \lor b)$$

Learning Group Activity

Come up with an expression in CNF (not the example), and one not in CNF.

Verifying CNF in Racket

```
(define/match (in-cnf? expr [level 'root])
  [((? symbol?) _) #t]
  [(`(not ,(? symbol?)) _) #t]
  [((list-rest 'or args) (or 'root 'and))
  (andmap (λ (x) (in-cnf? x 'or)) args)]
  [((list-rest 'and args) 'root)
  (andmap (λ (x) (in-cnf? x 'and)) args)]
  [(_ _) #f])
```

Conversion to CNF

We can convert any boolean expression composed of just conjunctions, disjunctions, and negations to CNF using the following mathematical properties:

- **Elimination of double-negation:** $\neg \neg a \rightarrow a$
- DeMorgan's Law (Conjunction): $\neg(a \land b) \rightarrow (\neg a \lor \neg b)$
- DeMorgan's Law (Disjunction): $\neg(a \lor b) \to (\neg a \land \neg b)$
- Distributive Property: $a \lor (b \land c) \rightarrow (a \lor b) \land (a \lor c)$

Practice: Convert to CNF

Convert each expression to CNF:

- $\neg (a \land \neg b)$
- $\neg ((a \lor b) \land \neg (c \lor d))$
- $\neg((a \lor b) \land (c \lor d))$

Racket: Convert to CNF

Here's the base structure we want our code to follow:

Double Negation Pattern Match

```
[`(not (not ,e)) e]
```

Simplify and/or of single argument

```
[`(or ,e) e]
[`(and ,e) e]
```

DeMorgan's Law

■ DeMorgan's Law for Conjunction

```
[`(not (and ,@(list-rest args)))
        (or ,@(map (curry list 'not) args))]
```

■ DeMorgan's Law for Disjunction

```
[`(not (or ,@(list-rest args)))
      `(and ,@(map (curry list 'not) args))]
```

Explosion of and/or with nested expression

and in and simplification

or in or simplification

```
[`(or , @(list-no-order (list-rest 'or inside) outside ...))
`(or , @inside , @outside)]
```

Distributive Law

Recurse otherwise...

```
[(list-rest sym args)
  (cons sym (map boolean->cnf args))]
```

Putting it all together

```
> (boolean->cnf '(or (and a b) (and (not c) d) (and (not e) f)))
'(and (or (not c) a (not e))
        (or (not c) b (not e))
        (or d a (not e))
        (or (not c) a f)
        (or (not c) b f)
        (or d a f)
        (or d b f))
```

SAT Solving

The **satisfiability problem**¹ in computer science asks:

Given a boolean expression, is there any set of assignments to the variables which results in the equation evaluating to true?

For example:

- (and a (not a)): not satisfiable
- (and a a): satisfiable

(you could imagine much larger inputs)

¹ If you've taken algorithms, you probably know that this problem is **NP-complete**

Davis-Puntam-Lodgemann-Loveland Algorithm

```
procedure DPLL(e):
    if e is true:
        return true
    if e is false:
        return false
    v \leftarrow \text{select-variable}(e)
    e_1 \leftarrow \text{simplify}(\text{assume-true}(v, e))
    if DPLL(e_1):
        return true
    e_2 \leftarrow \text{simplify(assume-false}(v, e))
    return DPLL(e_2)
```

Note

DPLL will work with any variable selection from select-variable, but certain selections may lead to a more efficent solution on average than others.

DPLL: Example

■ We never reached true, so this equation is not satisfiable

false

DPLL: Exercise

Draw the DPLL tree for the following expression, and determine whether the equation is satisfiable or not:

$$(a \vee \neg b) \wedge (\neg a \vee b) \wedge (\neg a \vee \neg b)$$

DPLL in Racket

```
(define (solve-cnf expr)
  (define (solve-rec expr bindings)
    (case expr
     [(#t) bindings]
      [(#f) #f]
      [else
        (let ([sym (choose-symbol expr)])
          (define (solve-assume value)
            (solve-rec (assume sym value expr)
                       (cons (cons sym value) bindings)))
          (let ([sym-true (solve-assume #t)])
            (if sym-true
              sym-true
              (solve-assume #f)))))))
  (solve-rec expr '()))
```

choose-symbol

```
Not a good heuristic, but it works!

(define (choose-symbol expr)
  (if (symbol? expr)
    expr
    (choose-symbol (cadr expr))))
```

Assuming and Simplifying

Handling Conjunction/Disjunction

```
(let ([look-for (case sym
                  「(and) #f|
                  [(or) #t])])
  (define (f item acc)
    (if (eq? acc look-for)
      acc
      (let ([result (assume var value item)])
        (cond
          [(eq? result look-for) result]
          [(eq? result (not look-for)) acc]
          [else (cons result acc)]))))
  (let ([result (foldl f '() args)])
    (cond
      [(null? result) (not look-for)]
      [(eq? result look-for) result]
      [else (cons sym result)])))
```

Putting It All Together

```
(define (solve expr)
  (solve-cnf (boolean->cnf expr)))
> (solve '(and a b))
'((b . #t) (a . #t))
> (solve '(or (and a b) (and c d) (and e f)))
'((d . #t) (f . #t) (c . #t))
> (solve '(and a (not a)))
#f
> (solve '(and (or (not a) b) (or a (not b))))
'((b . #t) (a . #t))
```